Langsung ke konten utama

Extraterrestrial life, Alien?



Extraterrestrial life,[n 1] also called alien life (or, if it is a sentient or relatively complex individual, an "extraterrestrial" or "alien"), is life that occurs outside of Earth and that probably did not originate from Earth. These hypothetical life forms may range from simple prokaryotes to beings with civilizations far more advanced than humanity.[1][2] The Drake equation speculates about the existence of intelligent life elsewhere in the universe. The science of extraterrestrial life in all its forms is known as exobiology.

Since the mid-20th century, there has been an ongoing search for signs of extraterrestrial life. This encompasses a search for current and historic extraterrestrial life, and a narrower search for extraterrestrial intelligent life. Depending on the category of search, methods range from the analysis of telescope and specimen data[3] to radios used to detect and send communication signals.

The concept of extraterrestrial life, and particularly extraterrestrial intelligence, has had a major cultural impact, chiefly in works of science fiction. Over the years, science fiction communicated scientific ideas, imagined a wide range of possibilities, and influenced public interest in and perspectives of extraterrestrial life. One shared space is the debate over the wisdom of attempting communication with extraterrestrial intelligence. Some encourage aggressive methods to try for contact with intelligent extraterrestrial life. Others—citing the tendency of technologically advanced human societies to enslave or wipe out less advanced societies—argue that it may be dangerous to actively call attention to Earth

Alien life, such as microorganisms, has been hypothesized to exist in the Solar System and throughout the universe. This hypothesis relies on the vast size and consistent physical laws of the observable universe. According to this argument, made by scientists such as Carl Sagan and Stephen Hawking,[6] as well as well-regarded thinkers such as Winston Churchill,[7][8] it would be improbable for life not to exist somewhere other than Earth.[9][10] This argument is embodied in the Copernican principle, which states that Earth does not occupy a unique position in the Universe, and the mediocrity principle, which states that there is nothing special about life on Earth.[11] The chemistry of life may have begun shortly after the Big Bang, 13.8 billion years ago, during a habitable epoch when the universe was only 10–17 million years old.[12][13] Life may have emerged independently at many places throughout the universe. Alternatively, life may have formed less frequently, then spread—by meteoroids, for example—between habitable planets in a process called panspermia.[14][15] In any case, complex organic molecules may have formed in the protoplanetary disk of dust grains surrounding the Sun before the formation of Earth.[16] According to these studies, this process may occur outside Earth on several planets and moons of the Solar System and on planets of other stars.[16]


Since the 1950s, scientists have proposed that "habitable zones" around stars are the most likely places to find life. Numerous discoveries in such zones since 2007 have generated numerical estimates of Earth-like planets —in terms of composition—of many billions.[17] As of 2013, only a few planets have been discovered in these zones.[18] Nonetheless, on 4 November 2013, astronomers reported, based on Kepler space mission data, that there could be as many as 40 billion Earth-sized planets orbiting in the habitable zones of Sun-like stars and red dwarfs in the Milky Way,[19][20] 11 billion of which may be orbiting Sun-like stars.[21] The nearest such planet may be 12 light-years away, according to the scientists.[19][20] Astrobiologists have also considered a "follow the energy" view of potential habitats.


Source: https://en.wikipedia.org

Komentar

Postingan populer dari blog ini

Study suggests Mars hosted life-sustaining habitat for millions of years

In a new study announced on Monday and available in the current volume of Earth and Planetary Science Letters, an international team led by scientists from Brown University in the United States said the planet Mars once had the right water and temperatures to host simple life forms — just not on its surface. Mars's rocky, subterranean layer once, for some hundreds of millions of years, had enough water and reductants to support some of the same kinds of microbial communities seen on Earth. "We showed, based on basic physics and chemistry calculations, that the ancient Martian subsurface likely had enough dissolved hydrogen to power a global subsurface biosphere," reported lead author and current Brown graduate student Jesse Tarnas. The paper does not claim life on Mars did exist but rather that conditions suitable for life are very likely to have lasted for an extended time. This habitable zone, located beneath Mars's then-frozen surface, would have reached...

human is one of Organisms at high altitude

Over 140 million people live permanently at high altitudes (>2,500 m) in North, Central and South America, East Africa, and Asia, and have flourished for millennia in the exceptionally high mountains, without any apparent complications. For normal human populations, a brief stay at these places can risk mountain sickness. For the native highlanders, there are no adverse effects to staying at high altitude. The physiological and genetic adaptations in native highlanders involve modification in the oxygen transport system of the blood, especially molecular changes in the structure and functions of hemoglobin, a protein for carrying oxygen in the body.[48][50] This is to compensate for the low oxygen environment. This adaptation is associated with developmental patterns such as high birth weight, increased lung volumes, increased breathing, and higher resting metabolism. The genome of Tibetans provided the first clue to the molecular evolution of high-altitude adaptation in...

Was a giant planet ejected from our solar system?

A fifth giant planet was kicked out of the early solar system, according to computer simulations by a US-based planetary scientist. The sacrifice of this gas giant paved the way for the stable configuration of planets seen today, says David Nesvorný, who believes that the expulsion prevented Jupiter from migrating inwards and scattering the Earth and its fellow inner planets. The Nice model (named after the city in France where it was devised) is currently the best explanation of why the solar system looks the way it does today. It describes how early gravitational interactions between the large outer planets and planetesimals – smaller bodies that are the building blocks of planets – would have scattered the latter throughout the solar system. This accounts for the period known as the “late heavy bombardment”, the scars of which bodies such as the Moon still bear today. It also helps explain the structure of the asteroid and Kuiper belts. However, for the model to work, the plane...